Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ScientificWorldJournal ; 2024: 7585145, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38434937

RESUMO

In this study, we investigated the use of manganese oxide-biochar nanocomposites (MnOx-BNC), synthesized from coffee husk (CH) and khat leftover (KL) for the removal of methylene blue (MB) from wastewater. Pristine biochars of each biomass (CH and KL) as well as their corresponding biochar-based nanocomposites were synthesized by pyrolyzing at 300°C for 1 h. The biochar-based nanocomposites were synthesized by pretreating 25 g of each biomass with 12.5 mmol of KMnO4. To assess the MB removal efficiency, we conducted preliminary tests using 0.2 g of each adsorbent, 20 mL of 20 mg·L-1 MB, pH 7.5, and shaking the mixture at 200 rpm and for 2 h at 25°C. The results showed that the pristine biochar of CH and KL removed 39.08% and 75.26% of MB from aqueous solutions, respectively. However, the MnOx-BNCs removed 99.27% with manganese oxide-coffee husk biochar nanocomposite (MnOx-CHBNC) and 98.20% with manganese oxide-khat leftover biochar nanocomposite (MnOx-KLBNC) of the MB, which are significantly higher than their corresponding pristine biochars. The adsorption process followed the Langmuir isotherm and a pseudo-second-order model, indicating favorable monolayer adsorption. The MnOx-CHBNC and MnOx-KLBNC demonstrated satisfactory removal efficiencies even after three and six cycles of reuse, respectively, indicating their potential effectiveness for alternative use in removing MB from wastewater.


Assuntos
Carvão Vegetal , Coffea , Compostos de Manganês , Nanocompostos , Óxidos , Águas Residuárias , Catha , Azul de Metileno
2.
Heliyon ; 9(10): e20717, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37842599

RESUMO

Due to their applications in cosmetology, medicine, antibacterial and other fields, zinc oxide nanoparticles (ZnO-NPs) are among the nanoscale materials experiencing exponential growth. In contrast, pure ZnO-NPs have been reported to have a very large energy bandgap, a large exaction binding energy, electron-hole recombination, no visible light absorption, and poor photocatalytic activities, which limit their potential uses. ZnO-NPs can be further extended through the incorporation of trace amounts of carbon materials to engulf these problems. We investigate the photocatalytic degradation of methylene blue (MB) dye with pure ZnO-NPs infused with a limited amount of carbon dot (C-dot) materials. Consequently, adding 10% C-dot to ZnO-NPs reduced their energy bandgap from 3.1 to 2.8 eV and significantly increased their photocatalytic activity. MB was almost completely degraded (98.4%) after 60 min when 50 mg of C-dot-incorporated ZnO-NPs were added. By comparison, the nanocomposite's photocatalytic activity exceeded that of pure ZnO-NPs by more than 50%. A surface charge and stability improvement are responsible for the extraordinary photocatalytic improvement. As far as we know, this is the best-ever photocatalytic improvement achieved by incorporating a trace amount of C-dot material into pure ZnO-NPs.

3.
Heliyon ; 9(6): e16889, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37346337

RESUMO

A green viewpoint based on the production of soap using waste products such waste cooking oils (WCOs) and Endod (Phytolacca dodecandra) is presented. The process of saponification, which involves reacting triglycerides with fats and oils in an alkaline solution, produces soap. With the help of WCO and Endod as manufacturing inputs, this study intends to create high-quality, commercially viable eco-friendly soaps. The optimal blend of WCO and Endod with sodium hydroxide solution was used in the current investigation to create laundry soaps. Evaluations were done on the cleansing effects and physico-chemical makeup of prepared soap. As a reference control, the raw oil soaps made without and with frying were employed. The free caustic alkali content, chloride content, moisture content, ethanol-insoluble-matter, total fatty matter, pH, and foam height values of the prepared soap were found to be in the range of 0%, 0%, 16.56-22.52%, 0.1-3.05%, 63.41-75.46%, 9.22-9.82%, and 3.3-8.1 cm respectively. The results obtained by blending fried WCOs and Endod were comparable to the Physico-chemical properties of the Endod-free uncooked/fresh oil soap. The soap made by blending WCO and Endod has higher cleansing power and better lather formation than the prepared soap with WCO without Endod. Moreover, the observed data are comparable with similar data reported in other literature, recommended acceptable standards (EAS, CES), and from many countries including the British, Malaysia, and the Philippines. Cooking oils fried at different temperatures do not have much effect on the quality of soap making. This suggested that the blending of WCOs and Endod can be used as raw materials to prepare high-quality and economically feasible soaps by replacing imported oils and fats.

4.
ACS Omega ; 7(12): 10796-10803, 2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35382288

RESUMO

Metal oxide nanoparticles (MO-NPs) are presently an area of intense scientific research, attributable to their wide variety of potential applications in biomedical, optical, and electronic fields. MO-NPs such as zinc oxide nanoparticles (ZnO-NPs) and others have a very high surface-area-to-volume ratio and are excellent catalysts. MO-NPs could also cause unexpected effects in living cells because their sizes are similar to important biological molecules, or parts of them, or because they could pass through barriers that block the passage of larger particles. However, undoped MO-NPs like ZnO-NPs are chemically pure, have a higher optical bandgap energy, exhibit electron-hole recombination, lack visible light absorption, and have poor antibacterial activities. To overcome these drawbacks and further outspread the use of ZnO-NPs in nanomedicine, doping seems to represent a promising solution. In this paper, the effects of temperature and sulfur doping concentration on the bandgap energy of ZnO nanoparticles are investigated. Characterizations of the synthesized ZnO-NPs using zinc acetate dihydrate as a precursor by a sol-gel method were done by using X-ray diffraction, ultraviolet-visible spectroscopy, and Fourier transform infrared spectroscopy. A comparative study was carried out to investigate the antibacterial activity of ZnO nanoparticles prepared at different temperatures and different concentrations of sulfur-doped ZnO nanoparticles against Staphylococcus aureus bacteria. Experimental results showed that the bandgap energy decreased from 3.34 to 3.27 eV and from 3.06 to 2.98 eV with increasing temperature and doping concentration. The antibacterial activity of doped ZnO nanoparticles was also tested and was found to be much better than that of bare ZnO nanoparticles.

5.
Nat Commun ; 12(1): 1452, 2021 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664259

RESUMO

Anode-free lithium metal batteries are the most promising candidate to outperform lithium metal batteries due to higher energy density and reduced safety hazards with the absence of metallic lithium anode during initial cell fabrication. In general, researchers report capacity retention, reversible capacity, or rate capability of the cells to study the electrochemical performance of anode-free lithium metal batteries. However, evaluating the behavior of batteries from limited aspects may easily overlook other information hidden deep inside the meretricious results or even lead to misguided data interpretation. In this work, we present an integrated protocol combining different types of cell configuration to determine various sources of irreversible coulombic efficiency in anode-free lithium metal cells. The decrypted information from the protocol provides an insightful understanding of the behaviors of LMBs and AFLMBs, which promotes their development for practical applications.

6.
ACS Appl Mater Interfaces ; 11(35): 31962-31971, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31393118

RESUMO

The combined effect of concentrated electrolyte and cycling protocol on the cyclic performance of the anode-free battery (AFB) is evaluated systematically. In situ deposition of Li in the AFB configuration in the presence of a concentrated electrolyte containing fluorine-donating salt and resting the deposit enables the formation of stable and uniform SEI. The SEI intercepts the undesirable side reaction between the deposit and solvent in the electrolyte and reduces electrolyte and Li consumption during cycling. The synergy between the laboratory-prepared concentrated 3 M LiFSI in the ester-based electrolyte and our resting protocol significantly enhanced cyclic performances of AFBs in comparison to the commercial carbonate-based dilute electrolyte, 1 M LiPF6. Benefitting from the combined effect, Cu∥LiFePO4 cells delivered excellent cyclic performance at 0.5 mA/cm2 with an average CE of up to 98.78%, retaining a reasonable discharge capacity after 100 cycles. Furthermore, the AFB can also be cycled at a high rate up to 1.0 mA/cm2 with a high average CE and retaining the encouraging discharge capacity after 100 cycles. The fast cycling and stable performance of these cells are attributed to the formation of robust, flexible, and tough F-rich conductive SEI on the surface of the in situ-deposited Li by benefiting from the combined effect of the resting protocol and the concentrated electrolyte. A condescending understanding of the mechanism of SEI formation and material choice could facilitate the development of AFBs as future advanced energy storage devices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...